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Energy-Conserving Lattice Boltzmann Thermal Model
in Two Dimensions
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A discrete velocity model is presented for lattice Boltzmann thermal fluid dynam-
ics. This model is implemented and tested in two dimensions with a finite differ-
ence scheme. Comparison with analytical solutions shows an excellent agreement
even for wide temperature differences. An alternative approximate approach is
then presented for traditional lattice transport schemes.

KEY WORDS: Thermal lattice Boltzmann; compressibility; BGK approxima-
tion; Gauss—-Hermitte quadrature.

1. INTRODUCTION

Over the last decade, it has been demonstrated that the lattice Boltzmann
method (LBM) is an effective approach method for simulating a wide vari-
ety of isothermal fluid flows.() In the case of thermal fluid flows, LBM
with a multi-speed approach under a single-relaxation-time BGK approx-
imation,® suffers from numerical instabilities.®) To avoid these instabili-
ties, the passive scalar approach® or introduction of a separate thermal
distribution® can be used. Vahala e al.(® have proposed a multi-speed
model with a higher-order-isotropy velocity model and multiple relaxa-
tion times to stabilize the numerical scheme and to have a variable Pra-
ndtl number. In ref. 6 a model was suggested based on Gauss—Hermite
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quadrature that is a straightforward extension of the a priori derivation
of the lattice Boltzmann equation by He and Luo."® To include thermal
effects, heat conduction and viscous heat dissipation, the quadrature must
be used to evaluate the moments of f to the eighth order. So the lattice
Boltzmann thermal model needs five discrete velocities in one dimension
and 25 discrete velocities in two dimensions.

In this work, we test different ways of implementating the proposed
approach. The main difficulty arises from the fact that the quadratures
are based on the equilibrium distribution function, which introduces an
explicit temperature dependence. So the set of discrete velocities resulting
from the quadrature is spatially inhomogeneous. To overcome this diffi-
culty several solutions can be envisaged. As far as the macroscopic veloc-
ity is concerned, this constraint is removed by a “low-Mach-number” type
of approximation. If a development equivalent to “low-Mach-number”
is derived for small temperature differences, a formulation is obtained
that would require, to ensure a precision equivalent to the Chapman-—
Enskog expansion, the exact evaluation of moments up to order 10
(cf. Appendix A). We have not chosen this solution, rather we propose
adapting the quadradrature to 25 discrete velocities by choosing a ref-
erence temperature for the evaluation of the velocity modules and we
take account of the temperature variations by systematically recalculat-
ing the weight factors. This system was implemented using a finite-differ-
ence scheme and has been validated for a series of academic examples that
show that the scheme performs very well even for quite wide temperature
differences. The second part of this work shows the difficulties involved
in the implementation of this velocity discretization within a traditional
lattice-transport approach. The various possibilities in this direction are
explained and a first series of tests is presented.

2. DISCRETE VELOCITY MODEL FOR THERMAL APPLICATIONS

In this section, a velocity space discretization is presented for the
Boltzmann equation under the BGK approximation:®

0 1
Livvi=—(f-9, n
T

where f= f (r,v,t) is the single-particle distribution function at location r,
microscopic velocity v and time ¢, t is the relaxation time and g=g (r,v, 1)
is the Boltzmann—Maxwell equilibrium distribution function:
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p (v—u?
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where R is the ideal gas constant and D is the dimension. The macro-
scopic variables (the density p, the velocity u and the temperature 7') are
the moments of the distribution function:

o= / fav, (3)
ou = /vfdv, 4)
%PDRT - %f(v—u)2 fav. ®)

As proposed by He and Luo, ¥ the set of discrete velocities selected
in the present work is the result of a direct dicretisation of the continu-
ous Boltzmann equation. This requires that a quadrature be used for the
evaluation of the three preceeding integrals that appear in the equilibrium
distribution function. Furthermore, the order of the quadrature must suit
the accuracy required. For macroscopic applications, it is sufficient for the
quadrature to satisfy exactly the macroscopic equations under the first-
order Chapman-Enskog expansion. Under the low-Mach-number approxi-
mation, using a Gauss—Hermite quadrature,®) this requires integrals of the

form
v2
I,,:/exp “3RT P, (v)dv (6)

to be computed exactly, where P, is any polynomial up to order 6
for isothermal applications and up to order 8 for thermal applications.
Using a Cartesian decomposition, this procedure leads, for thermal appli-
cations, to a set of five discrete velocity co-ordinates and five quadrature

weights for each dimension. These discrete velocities are vy =0, vi =—vy =
(8—+10)RT and v3=—v4=+/(5++10)RT and the quadrature weights
are

-2
w~=265!x/27TRTH( Vi ) , 7
’ \ Varr @
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where Hg is the sixth-order Hermite polynomial. In two dimensions for
instance, the moments of the distribution function are evaluated as

/ " fdv= /exp( 2RT>expE )dV’vZZwaJ V”Jz”z)’

exp ( T4

®)

where ey and ey are the two unit vectors of the Cartesian co-ordinate
system, vjj=viex +v;ey and f; ; Ef(r, vi,j,t). As the quadrature order
is high enough to ensure satisfaction of the macroscopic equations under
the first-order Chapman-Enskog expansion, such a discrete-velocity model
should lead to exact simulations of macroscopic gas dynamics, including
energy conservation (but with a fixed Prandtl number because of the BGK
approximation). However, this model cannot be implemented as is: the dis-
crete velocities are functions of the local temperature and so are variable
in space. The corresponding discretized version of the Boltzmann equation
could therefore only be solved using cumbersome interpolation schemes
in the velocity space. A first approximate solution could be to make a
Taylor expansion of the equilibrium distribution function around a ref-
erence temperature Tr. This raises to order ten the polynomials P, for
which I, must be computed exactly. This requires seven discrete velocities
for each dimension, thus severely increasing computation requirements.
Another approximate solution was preferred, in which the discrete veloc-
ities are fixed, corresponding to a given reference temperature, but the
quadrature weights are recomputed for an exponential ponderation func-
tion depending on the local temperature 7. This local adjustment of the
quadrature weights takes into account the fact that for macroscopic appli-
cations the distribution function is close to the equilibrium distribution at
the local temperature. For this approximate thermal model, the discrete

velocities are therefore vy=0, vi=—vy =1/ (5—+V10)RTef and vz =—vg4=

V(54++10)RT,¢ and the quadrature weights are obtained locally as the

solutions of the following linear system:(®)

2

Ko =/e7de=Zw,-, ©)]
1)2

Ky = /uze‘m dv=">"w; v}, (10)
w2

K4=/v4e_mdv=2wi v} ()
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with Ko=~27RT, K»=RTKy and K4=3(RT)?Ky. The solution of this
system leads to following simple expressions for the local weights:

(3-413) Ko~ K

wy = Ko — , 12
0 0 2207 (12)
2
v3Ky — K4
R YO B (13)
2 (”3‘”1)
K4 —v2K
wy = — 172 (14)

203 (05— vf)

3. FINITE-DIFFERENCE IMPLEMENTATION AND TESTING

Numerical simulations were performed to test the validity of the
above described discrete-velocity model. A classical Euler scheme is used
for temporal integration and a second upwind finite-difference scheme is
used for transport.!9 Boundary conditions are those of ref. 11. A series
of academic simulation examples is presented below to illustrate the abil-
ity of the model to deal with compressibility and thermal effects. The first
example concerns viscosity effects. We consider the decay of a vortex as
described in ref. 12. The initial velocity conditions are:

N2

e = (3o — ¥ xp (—('L—Z‘”> (15)
(r—ro)*

uy = (x —xo)wp eXp ——12 ) (16)

where rg=(xg, yg) is the center of the vortex, L is the characteristic leng-
th of the initial vortex and wy is the vorticity at the center. Figure 1 dis-
plays the analytical and simulated vorticity decays at vortex center, wmax.
The next two examples concern compressibility. Figure 2 shows the verti-
cal density profile corresponding to stratification by gravity of an isother-
mal horizontal gas layer. Figure 3 shows the speed of sound evaluated by
simulating propagation of a density wave. The last two examples concern
thermal effects. Figure 4 illustrates simulation results for Couette flow and
Fig. 5 shows estimated energy fluxes in a pure-conduction configuration.
In all cases, the accuracy levels obtained in terms of density, velocity and
temperature fields at the stationary limit are quite satisfactory. The points
requiring more specific attention are the energy-flux estimations and the
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Fig. 1. Vorticity as a function of the dimensionless time r* =v¢/L? with v=RTt the kine-

matic viscosity. The solid line represent the analytical result: wmax (1*) = wo/(1+4t*)2. The
crosses represent the LB simulations.
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Fig. 2. A gravity force is introduced in the model as proposed by He e al. 13 Vertical den-
sity profiles are compared with analytical macroscopic solutions at the stationary limit for
an isothermal gas layer of thickness H. Simulations are performed for three values of o =
gH/RT where g is the acceleration due to gravity.
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Fig. 3. The speed of sound was estimated for various temperatures and compared with the
theoretical value ¢ = ~/2RT. Following the idea proposed by Watari and Tsutahara,1? the
density distribution was initialized as a step profile with a small difference in density and
the speed of sound is directly estimated by simple front tracking.
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Fig. 4. Heat dissipation is tested in traditional Couette flow with a temperature gradient®
for a gas layer of thickness H. The wall at location y =0 is fixed and its temperature is 7j.
The wall located at y=H moves with a constant speed and its temperature is 7;. The simu-
lation points are in complete agreement with the analytical solution for different Eckert num-
bers (Ec=[4; 20; 40]).
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Fig. 5. The relative error in thermal conductivity is shown for different values of AT/T.
From the Chapman—Enskog expansion, the thermal conductivity is A = ((D+2)/2)R?T.
The mean (circles) and maximum (crosses) relative errors incurred using the finite-difference
scheme tend asymptotically towards 0 for quasi-isothermal situations. The sensitivity to the
reference temperature is indicated by the maximum error, as it occurs where the temperature
is minimum or maximum, i.e., T — Tref = AT /2. However the maximum relative error inher-
ent in a traditional lattice scheme (triangles) shows the presence of a residual error.

prediction of unstationary dynamics. The fact that discrete velocities are
fixed at a reference temperature Tp.r implies that, even though the quad-
rature weights are adjusted to the local temperature T, the quadrature
order is not high enough for rigorous macroscopic simulations. The asso-
ciated biases are therefore direct functions of the temperature difference
T — Tier. The simulation results reported in Fig. 5 indicate however that
acceptable accuracy is obtained even for strong deviations from the refer-
ence temperature. Configurations with 10% temperature differences could
be simulated with a 0.5% accuracy on energy fluxes at the stationary limit.
Configurations with 30% temperature differences gave 5% accuracy in flux.
The corresponding accuracy levels in terms of characteristic times in the
unstationary phases are very similar.

Note. In the applications tested and even for very large temper-
ature differences, the present model showed no pathological numerical
instabilities. However, strong instabilities appeared (in accordance with
the multi-speed thermal lattice Boltzmann literature®), when the quad-
rature weights were kept constant and spatially uniform at the values
corresponding to the reference temperature. So adjusting the quadrature
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weights to suit the local temperature seems useful in terms of numerical
stability independently of accuracy considerations.

4. IMPLEMENTATION WITHIN THE STANDARD LATTICE
BOLTZMANN ALGORITHM

When attempting to implement the above discrete-velocity model in
standard lattice Boltzmann schemes, the first difficulty is that v3 #2 v
and vg #Z2v;. Independent of the temperature, we find v3/v; =vq/vy~2.1.
Therefore, if the time step 8¢ is adjusted so that information is exactly
transported from one node to an adjacent node at speed vy (or vy) dur-
ing 8¢, then the information transported at speed vy (or v4) does not fall
exactly on the lattice. In order to bypass this difficulty with an approx-
imate approach, we suggest imposing arbitrarily vy =2v; and vq = 2v3,
and making use of the same quadrature weight adjustment as in Sec-
tion 2, function of the local temperature. This leads to the following dis-

crete velocity set: vg=0, vi=—vy=4/(5— V10)RT.s and v3=—v4 =2v;.
The quadrature weights are those of Eq. (12). As already mentioned, such
a procedure of weight adjustment for a fixed set of velocities does not
ensure a high enough order of quadrature. Furthermore, unlike the veloc-
ity set derived with the Gauss—Hermite procedure, this scheme will not be
precise in the limit of small temperature differences. In order to test the
level of accuracy that can be achieved with such an approximate approach,
this new discrete-velocity model is implemented in the following lattice
Boltzmann scheme:®)

ot

F(revi ey 480 =7 (0¥ 1) = — =

[f(rvi g 1) =g (x.vij.1)]
(17)

with f = f + 3£ (f —g). When the resulting lattice Boltzmann model
is tested on the same five test cases as in Section 3, the accuracy
achieved in terms of density, velocity and temperature fields in the sta-
tionary limit are quite similar to those obtained with the more accurate
quadrature set and the finite-difference scheme. However the estimated
energy fluxes and the characteristic times in the unstationary phases
are much less accurate. In Fig. 5, the error on the energy flux does
not vanish in the quasi-isothermal limit: a residual error of more than
10% is observed and similar biases are observed concerning temporal
evolution.
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5. CONCLUSIONS

For implementation in traditional lattice Boltzmann schemes, a
degraded “double-speed” version of the proposed discrete velocity model
can be used for approximate simulations. However, results are unsatis-
factory in simulating energy flux. So far we have performed two com-
plementary test studies to try to bypass this flux-estimation difficulty. In
both cases, the idea was to go back to the accurate discrete velocity
model of Section 2 using an interpolation procedure. In the first study,
we interpolated f; ; outside the nodes in geometrical space. When a lin-
ear interpolation was used, strong numerical instabilities were observed.
Practical simulations could only be performed with a quadratic interpo-
lation.(®1% The corresponding accuracy for energy-flux estimation is grid
dependent and tends to that of the finite-difference scheme in the limit of
an infinite number of nodes. We observed that residual errors lower than
those of Section 4 could easily be reached with reasonable spatial meshing.
In the second test study, the interpolation was performed in the velocity
space so as to estimate the distribution function for the non-double speed
assuming that f follows the Maxwellian form of the local equilibrium dis-
tribution function (cf. Appendix B). Here the accuracy is not lattice depen-
dent: there was a 3% residual error for energy flux which is significantly
better than the residual error of the above “double-speed” model. These
last preliminary test studies were only performed in one dimension. For
extension to two dimensions, difficulties arise in terms of boundary con-
ditions.

On the whole, it can be concluded that using a finite-difference lattice
Boltzmann scheme, excellent accuracy levels can be obtained with the set
of five discrete velocities corresponding to the Gauss—Hermite quadrature,
together with a local adjustment of the quadrature weights as a function
of temperature. This could be performed without great difficulty because
the finite-difference approach is not restricted to velocity sets that exactly
link lattice nodes in one time step.

APPENDIX A. DETERMINATION OF QUADRATURE ORDER

For heat transfer applications, thermal fluxes must be correctly eval-
uvated and therefore the moments of the distribution function must be
correctly evaluated up to the third moment. Here the first-order Chapman—
Enskog expansion is used to show that this constraint is equivalent to
a correct evaluation of the first six moments of the local equilibrium
distribution function (Section A.l). Under the low-Mach and low-AT
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approximations, the equilibrium distribution function is written as the
product of a centered Gaussian with a fourth order v polynomial (Sec-
tion A.2), which leads to the use of 10th order Gauss—Hermite quadrature
(Section A.3).

A.1. Chapman-Enskog Procedure

The Chapman—Enskog procedure is used to recover the macroscopic
equations. This consists in expanding the distribution function f around
the equilibrium function g and in evaluating the mean value of the prod-
uct of the Boltzmann equation by all collisional invariants.

fx(%—i—wVf)dv:O (A1)

with x a collisional invariant (1,v and (1/2)v?). At zero order, the integral
(A.1) is evaluated with f =g leading to the hydrodynamic equations for
perfect fluids (without dissipative effects). To recover the dissipative terms,
the distribution function f is expanded around the equilibrium function g.

frg+ o (A.2)

Replacing f in the Boltzmann equation by g+ f( leads to:

0 (s+ ") ) fo
— vV (g0 ) = I (A3)
and neglecting 1 on the left-hand side, /) may be written:
M 98
V-t §+V-Vg . (A4)

The temporal and spatial derivatives of g are direct functions of the spa-
tial derivatives of p, u and T, which leads to:

: (v-w’ 5
W Lo o s
! Tg{T[(V v VT]{ 2RT 2}
1 al/lj ou; . o _l o
+ 2RT (axi +3_xj) |:(Uz uz)(UJ u]) 381j(v u) :|}

(A.5)

So, in the general case, f() can be written as ()~ g- P3(v), and for iso-
thermal applications (D~ g- Py (v).
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A.2. Equilibrium Expansion

For thermal applications, the equilibrium distribution function g is
expanded around u =0 (low-Mach-number approximation) and around
T =Ty, where Ty is a reference temperature.

_ ;exp _(v—u)2
Q2w RT)P/? 2RT
v u vu_ (v- u)2 u?
2RT tRT 2(RT)> 2RT
~_ P 1+V u+ (v-u)? u’
(ZnRT)D/2 P 2R(To+6) RT  2(RT)2 2RT
o P v o9 1_|_V'u_|_ (v-u)2 u?
(271RT)D/2 P 2RT0 2RTy Ty RT 2(RT)?> 2RT
v o0 veu (v -u)? u?
N L exp 1+ — )| 1+—=+ 5 —
QrRT)P/ 2RT 2RTy Ty RT ' 2(RT)> 2RT

V2
A exp (— 2RTO) - P4(vV) (A.6)

~

Qr RT)D/2

with 6 =T — Ty, and P4(v) is a fourth-order v polynomial. So the equilib-
rium distribution function g is approximated by the product of centered
Gaussian function with a fourth-order v polynomial.

A.3. Required Quadrature Orders

For thermal applications, moments of f are addressed up to the
third: [ P3(v) f dv. Then frag+ fD=g.P3(v) and g%exp(—%y&(v).
So the quadrature must evaluate the moments of a Gaussian function up
to order 10: [ Pjo(v)exp (—%)dv. For isothermal applications, only the
first two moments of f are addressed. Then f~g+ f()=g. P,(v) and
g exp (—%) - P»(v). So the quadrature must evaluate the moments of a

Gaussian function up to order 6: [ Ps(v) exp(—%)dv.

APPENDIX B. EXTRAPOLATION IN VELOCITY SPACE

The discrete velocity set corresponding to the Gauss—Hermite quad-
rature is such that vz # 2v; and wvq # 2v, (cf. Fig. B.1). So, in one
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Fig. B.1. Discrete velocities set.

dimension, for the traditional lattice Boltzmann algorithm, we compute
fo. f1, f2, fou, and fo,,. Then f3 and f4 are extrapolated assuming f; has
a Maxwellian form:

-8

firAexp C

(B.1)

To extrapolate f3, the coefficients A, B and C are determined with fy, fi
and f>,, and to extrapolate f4 another set of coefficients is used corre-
sponding to fy, f>» and f»,,. Finally, the macroscopic variables p, u and
T are calculated with fy, f1, f2, f3 and f4.
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